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QO&A with BiIDAF+

*One of the most fascinating application of Natural Language Processing is Machine Comprehension.
*Q&A entails answering questions about a certain text, context, or document
*Involves building systems that automatically answer questions posed by humans in a natural language

*Machine comprehension: Involves teaching models to read a passage of text(Context) and then

answer questions(Query) about it

Goal: To improve the BiDAF model to effectively do Q&A tasks on machine comprehension given a

context and query
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Methodology (BiDAF Base-Model)

*Closed-domain, extractive Q&A model.

«Stands for Bi-Directional Attentional Flow (BIDAF) - = T Yy
T (o 1 92 Or
*Trained on SQUAD 2.0 1
Query2Context and Context2Query |
*Uses four main layers: encoding, attention, modeling, and Attention -
output layers h,T hzT T hrT

*Uses both context-to-query and query-to-context attention

*Output Layer predicts start and end positions within the context

where the answer lies

*Foundation for our experiments
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Overview

Embed Layer

Attention Modeling
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Token_f —l
End
Contextual Embed Output
Embed Layer Layer Layer
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Experiments on BiDAF

In this work, besides the baseline model, we explore:
1.Embedding operations:

1. Character embeddings

2. Word Embeddings[Glove]

3. Token features[POS, NER, EM, TF] -> spaCy for extracting tags from text
2.Attention mechanisms:

1. Self-Attention

2. Coattention

3.0ther Experiments
Evaluate different versions of our model with BiDAF(Baseline) and QANet on EM and F1 Score

ﬁl—D THE UNIVERSITY OF TEXAS AT DALLAS



Experimental Setup

« All experiments are implemented in Pytorch 1/2 SQUAD 2.0 description of files:
* train-v2.0.json:

Total topics: 221
30 Epochs Total paragraphs: 10035
Total questions: 68319
» dev-v2.0.json:

 Batch size 64

* Fixed Learning Rate of 0.5

« Hidden size of 100 Total topics: 16
« Default drop rate of 0.2 Total paragraphs: 646
Total questions: 6078
» Adadelta optimizer  test-v2.0.json:
+  Negative log likelihood optimizer Total topics: 20
. Total paragraphs: 570
* Trained on Google Colab Total questions: 5915
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Character Embedding

* Vectors generated to represent characters in each word

Character-level ‘ PP
-
represantation

 CNN Layers are built on character embeddings

\

* ReLlU activation function, dropout, and max-pooling are appliec St | CEREE o TR o S o S o IO

----------------------------------------

. X g Y bl .
on the character embeddings Maxpooiies | :

..........................................

« Added batch normalization to every CNN Layer for cemlien { _/LA__V__A\ A/T,\VA —
regularization
. : , | |
« Tested three different scenarios: Character ; |
Embeddings
g \ /7 ~ 7/ \ / -
* 1 CNN Layer Without Batch Normalization Padding | M || ® ' k Padding

« 2 CNN Layers Without Batch Normalization
« 2 CNN Layers With Batch Normalization




Improvements with Character Embedding

Batch Norm

F1 EM AVNA

BiDAF(base) 56.38 52.87 63.49

1 CNN Layer Without 56.74 53 67 63.54
Batch Norm

2 CNN Layers Without 57 33 54 02 64.63
Batch Norm

2 CNN Layers with 60.34 56.75 67.45




Token Features

We experiment with ideas from Chen et al. on token features to create a latent vector

ENT :Named Entities Recognized by the spaCy’s small English model based on WordNet 3.0

Eg. "Apple is looking at buying U.K. startup for $1 billion", "Apple" is tagged as an organization, "U.K." is tagged as
a geological entity, and "$1 billion" is tagged as money.

POS : Parts of Speech tags Recognized by spaCy
Eg. "Apple" is tagged as "proper noun singular"

« TF :Frequency of the word in a context / Total words in context

EM : Exact match vector for every word in Context vs Question
comparision of each lowercase word in context with question, labled as 1 or O

The four token features forms a vector length of four for each word in the context
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Variations in using the Token Features

VARIATION 1

VARIATION 2

POS Linear > 100

ENT Linear

TE m

EM Linear

WORD Encoder -
Embedding Linear

@) e D

POS Linear > 100

ENT Linear > 100

TF m 100

EM Linear > 10 Highway

WORD & [500] = il Ll
Embedding [ Tinear 100

(300) —>
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POS

1
ENT 1
TF 1
VARIATION 3
EM 1 Highway
i Encod
worp @ (00 = Layer
Embedding 300
(300)
POS 1
ENT 1 - :ighvzlay
Linear - ncoder
VARIATION 4 TF 1 Layer
EM 1
WORD _ Highway
Embedding 300 | Slulil 3 Encoder
o 100 pcode
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POS 1
ENT 1
VARIATION 5 v o [T o
ighway
EM 1 Linear Encoder
QW trer W [ ncoc 100

WORD _
Embedding 300 | Linear > [400]

(300)

4 token features are pre-computed during setup for efficiency

* Results on the next slide showcase the performance jump compared to our
baseline

 For variation 5, we form a vector of length four for each word in the context, pass
it through a projection layer, concatenate with word embeds, pass through

projection and finally pass through a small highway network
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Results

Models F1 EM
BiDAF(base) 56.38 52.87
Variant 1 59.60 56.12
Variant 2 57.39 54.07
Variant 3 57.45 52.46
Variant 4 58.30 55.59
Variant 5 60.31 57.25
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Ablation Study on Token Features

* Token features bring such a significant

jump in F1 and EM metric
* Single Token Feature experiment

» All other features replaced by zeros, while

the rest of the model is kept identical

Results of Ablation Study

64 -

F1 Score
3 S

wm
co

561

ENT TF EM

Base POS
Models
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Attention

« Context matrix
« Similarity matrix

« Context-to-Query attention

* Query-to-Context attention

 Mega-merge




Attention

A (Matrix I

ortant Word

U (Attended Query Matrix for All Context Words)

Take H;; (t' column of H) Take O, (t** column of 0)

9. Megamerge

Calculate 0.,

..perform this for all t to get...

Take A.; (t*™ Column of A) and calculate H. o H;




Self-Attention

*  Weight matrices for Query, Key and Value

* Unnormalized attention weights ror
'
. : v, @21
Attention scores % 1
. WO \ where a,; = softmax e
« On Q2C and C2Q attentions raire [\/ﬁk
Current input ("query") i
: : w,
« On BiDAF attention % X0 |
W y@
)
.&

e Wq w2’T /
xD % ® |
WV

yD




Co-Attention

* Projected query hidden state
« Affinity matrix - Product of context and projected query hidden states
« Attention distributions(SoftMax) and vectors for C2Q and Q2C

* Weighted sum of Q2C with attention distributions of C2Q

« Feed this sequence to Bi-LSTM |
Bi-LSTM 4—‘
Coattention Second Level
Layer Attention
*
Context2Query and Query2Context Attention




Improvements with Attention

F1 EM
BiDAF(base) 56.38 52.87
BiDAF(base) + Self-Attention 56.96 53.74
Self-Attention 57.31 54.76
Co-Attention 51.71 51.66




Conclusion

« Addition of Character Embeddings provides a big step up in performance in the
base model(~4%)

« Token Features(ENT, POS, TF, EM) also increase the performance by a large
margin(~4%)

« Self-attention on Q2C and C2Q matrixes performs better than co-attention

 We hope to see a considerable improvement in performance post integrating

Character Embeddings, Token Features and Self Attention to our base model
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Future work

Integrate all experiments

Train the final model on entire SQUAD 2.0 dataset

Comparision with QANet

Report final results
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